Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5RS,10SR,15RS)-Trimethyltruxene¹

Kandace R. Thomas, Raj K. Dhar, Frank R. Fronczek* and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Received 2 November 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 90 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.053; wR factor = 0.157; data-to-parameter ratio = 26.8.

The title molecule, $C_{30}H_{24}$, was prepared as a possible precursor to buckminsterfullerene cages. The two enantiomers adopt the *anti* configuration, with one *S/R* and two *R/S* methyl groups, one *anti* to the other two. The truxene framework is slightly non-planar: with respect to the central six-ring mean plane, the three methyl C atoms are 1.377 (3), -1.475 (3) and 1.515 (3) Å distant, whereas the respective proximate peripheral six-ring mean planes make dihedral angles of 6.27 (6), 3.45 (7) and -7.37 (7)°.

Related literature

For related structures, see: De Frutos *et al.* (1999, 2002). For the synthesis of truxenes, see: Amick & Scott (2007); Dehmlow & Kelle (1997); Kipping (1894*a*,*b*); Hausmann (1889); Wislicenus (1887). For buckminsterfullerene, see: Kroto *et al.* (1985). Buckybowls are intermediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as star-shaped organic semiconductors in solution, see: Sun *et al.* (2005).

Experimental

Crystal data

 $C_{30}H_{24}$ V = 2022.69 (8) Å³

 $M_r = 384.49$ Z = 4

 Monoclinic, $P2_1/n$ Mo K\alpha radiation

 a = 8.6755 (2) Å
 $\mu = 0.07 \text{ mm}^{-1}$

 b = 18.2860 (4) Å
 T = 90 K

 c = 12.8206 (3) Å
 $0.15 \times 0.15 \times 0.13 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.955, T_{\rm max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	274 parameters
$wR(F^2) = 0.157$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
7338 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

13386 measured reflections

 $R_{\rm int} = 0.034$

7338 independent reflections

5008 reflections with $I > 2\sigma(I)$

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–1200)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2041).

References

Amick, A. W. & Scott, L. T. (2007). J. Org. Chem. 72, 3412-3418.

- De Frutos, O., Gomez-Lor, B., Granier, T., Monge, M. A., Gutierrez-Puebla, E. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204–207.
- De Frutos, O., Granier, T., Gomez-Lor, B., Jimenez-Barbero, J., Monge, A., Gutierrez- Puebla, E. & Echavarren, A. M. (2002). *Chem. Eur. J.* 8, 2879– 2890.
- Dehmlow, E. V. & Kelle, T. (1997). Synth. Commun. 27, 2021–2026.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hausmann, J. (1889). Ber. Dtsch Chem. Ges. 22, 2019-2026.
- Kipping, F. S. (1894a). J. Chem. Soc. Trans. 65, 269-290.
- Kipping, F. S. (1894b). J. Chem. Soc. Trans. 65, 480-503.
- Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. (1985). *Nature* (London), **318**, 162–163.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y. M., Xiao, K., Liu, Y. Q., Wang, J. L., Pei, J., Yu, G. & Zhu, D. B. (2005). Adv. Funct. Mater. 15, 818–822.
- Wislicenus, W. (1887). Ber. Dtsch Chem. Ges. 20, 589-595.

Acta Cryst. (2011). E67, o3494 [doi:10.1107/S1600536811048616]

(5RS,10SR,15RS)-Trimethyltruxene

K. R. Thomas, R. K. Dhar, F. R. Fronczek and S. F. Watkins

Comment

Buckminsterfullerene is a spherical fullerene molecule with the formula C_{60} . It was first prepared in 1985 by Kroto *et al.* Buckybowls have been recognized as valuable intermediates in the synthesis of buckminsterfullerene and also show many valuable and interesting properties, including surface selective chemistry. As a part of ongoing investigations for synthesis of bucky bowls, the title molecule, trimethyltruxene, $C_{30}H_{24}$, was prepared as a possible precursor to buckminsterfullerene cages. Furthermore, these truxene compounds, which serve as backbone of bucky bowl derivatives also have shown properties of organic field-effect transistors (OFETs) based on oligothiophene-functionalized truxene derivatives, which have been fabricated for use as novel star-shaped organic semiconductors in solution (Sun *et al.*, 2005).

Two isomers of the title compound, *syn* and *anti* are possible. De Frutos *et al.* (2002) prepared mixtures of the two isomers, which could be converted to the pure, more stable *syn* compound by reaction with base, potassium t-butoxide. We report here the structure of the less stable *anti* isomer, which is not a viable precursor for buckybowls.

The parent heptacyclic aromatic system, truxene (10,15-dihydro-5*H*-diindeno[1,2 - a:1',2'-c]fluorene), is planar with 3/m (C_{3 h}) symmetry. The title molecule, I, is slightly non-planar with no discernable pattern: with respect to the central 6-ring mean plane, the three methyl groups are +1.377 (3), -1.475 (3) and +1.515 (3) Å distant, whereas the proximate peripheral 6-ring mean planes make dihedral angles of +6.27 (6)°, +3.45 (7)° and -7.37 (7)°.

Experimental

Synthesis of truxene was carried by the one-pot, acid catalyzed, head-to-tail cyclotrimerization synthesis method detailed in (Amick & Scott, 2007) The trimethylation of truxene was carried out by treating truxene with *n*-butyl lithium, followed by treatment with methyl iodide. A suitable single-crystal was obtained by recrystallization from diethyl ether, dichloromethane and methanol.

Refinement

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic C), 1.00 (alkyl C) Å, and $U_{iso}=1.2U_{eq}$, thereafter refined as riding. A torsional parameter was refined for each methyl group, with C—H bond distances 0.98 Å and $U_{iso} = 1.5U_{eq}$. The largest peak in the final difference map was at the center of the C18–C26 bond, and the top 33 peaks lay near bond centers.

Figures

Fig. 1. View of (I) (50% probability displacement ellipsoids)

(5*R*,10*S*,15*R*)-*rel*-5,10,15-trimethyl-10,15- dihydro-5*H*-tribenzo[*a*,*f*,*k*]trindene

Crystal data

$C_{30}H_{24}$	F(000) = 816
$M_r = 384.49$	$D_{\rm x} = 1.263 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6571 reflections
a = 8.6755 (2) Å	$\theta = 2.5 - 33.5^{\circ}$
b = 18.2860 (4) Å	$\mu=0.07~mm^{-1}$
c = 12.8206 (3) Å	T = 90 K
$\beta = 96.007 (1)^{\circ}$	Prism, yellow
$V = 2022.69 (8) \text{ Å}^3$	$0.15\times0.15\times0.13~mm$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	7338 independent reflections
Radiation source: sealed tube	5008 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 33.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
CCD rotation images, thick slices scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -28 \rightarrow 23$
$T_{\min} = 0.955, \ T_{\max} = 0.976$	$l = -19 \rightarrow 19$
13386 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.053$
$wR(F^2) = 0.157$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0893P)^2 + 0.0548P]$ where $P = (F_o^2 + 2F_c^2)/3$
7338 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
274 parameters	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
0 constraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C01	-0.07933 (13)	0.09157 (6)	0.49364 (9)	0.0170 (2)
H01	-0.0475	0.0572	0.5526	0.020*
C02	-0.19146 (13)	0.05432 (6)	0.41175 (10)	0.0174 (2)
C03	-0.33977 (14)	0.02847 (7)	0.42222 (10)	0.0203 (2)
H03	-0.3798	0.0296	0.4884	0.024*
C04	-0.42872 (14)	0.00091 (7)	0.33434 (10)	0.0206 (2)
H04	-0.5294	-0.0178	0.3409	0.025*
C05	-0.37157 (14)	0.00050 (7)	0.23706 (10)	0.0192 (2)
H05	-0.4346	-0.0173	0.1774	0.023*
C06	-0.22251 (13)	0.02602 (6)	0.22615 (10)	0.0177 (2)
H06	-0.1835	0.0254	0.1596	0.021*
C07	-0.13174 (13)	0.05235 (6)	0.31430 (9)	0.0154 (2)
C08	0.02504 (13)	0.08458 (6)	0.32688 (9)	0.0153 (2)
C09	0.13369 (13)	0.09525 (6)	0.25572 (9)	0.0152 (2)
C10	0.13230 (13)	0.06937 (6)	0.14305 (9)	0.0172 (2)
H10	0.0400	0.0894	0.0990	0.021*
C11	0.28051 (14)	0.10304 (6)	0.11113 (10)	0.0174 (2)
C12	0.34197 (15)	0.09751 (7)	0.01588 (10)	0.0213 (3)
H12	0.2860	0.0734	-0.0418	0.026*
C13	0.48723 (15)	0.12793 (7)	0.00611 (10)	0.0223 (3)
H13	0.5300	0.1249	-0.0590	0.027*
C14	0.57001 (14)	0.16264 (6)	0.09067 (10)	0.0197 (2)
H14	0.6696	0.1823	0.0832	0.024*
C15	0.50823 (14)	0.16888 (6)	0.18647 (10)	0.0182 (2)
H15	0.5647	0.1928	0.2441	0.022*
C16	0.36210 (13)	0.13934 (6)	0.19621 (9)	0.0154 (2)
C17	0.27069 (13)	0.13486 (6)	0.28678 (9)	0.0149 (2)
C18	0.30010 (12)	0.16021 (6)	0.38920 (9)	0.0148 (2)
C19	0.43313 (13)	0.20650 (6)	0.43845 (9)	0.0165 (2)
H19	0.5346	0.1829	0.4286	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	0.40577 (13)	0.20572 (6)	0.55330 (9)	0.0162 (2)
C21	0.49513 (13)	0.23644 (7)	0.63774 (10)	0.0191 (2)
H21	0.5885	0.2614	0.6278	0.023*
C22	0.44625 (14)	0.23020 (7)	0.73774 (10)	0.0204 (2)
H22	0.5061	0.2515	0.7962	0.025*
C23	0.30980 (14)	0.19282 (7)	0.75213 (10)	0.0197 (2)
H23	0.2784	0.1884	0.8206	0.024*
C24	0.21912 (13)	0.16198 (6)	0.66747 (9)	0.0178 (2)
H24	0.1268	0.1363	0.6779	0.021*
C25	0.26576 (13)	0.16933 (6)	0.56710 (9)	0.0153 (2)
C26	0.19633 (13)	0.14324 (6)	0.46379 (9)	0.0148 (2)
C27	0.05726 (13)	0.10782 (6)	0.43211 (9)	0.0149 (2)
C28	-0.15190 (14)	0.16121 (7)	0.53548 (11)	0.0226 (3)
H28A	-0.0753	0.1860	0.5849	0.034*
H28B	-0.2422	0.1479	0.5714	0.034*
H28C	-0.1843	0.1940	0.4768	0.034*
C29	0.13709 (15)	-0.01460 (7)	0.13416 (11)	0.0230 (3)
H29A	0.1441	-0.0285	0.0610	0.034*
H29B	0.0425	-0.0354	0.1578	0.034*
H29C	0.2277	-0.0334	0.1781	0.034*
C30	0.42829 (15)	0.28518 (7)	0.39498 (10)	0.0223 (3)
H30A	0.4338	0.2838	0.3190	0.033*
H30B	0.5166	0.3129	0.4286	0.033*
H30C	0.3315	0.3088	0.4097	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C01	0.0155 (5)	0.0216 (5)	0.0142 (5)	-0.0022 (4)	0.0025 (4)	0.0001 (4)
C02	0.0162 (5)	0.0190 (5)	0.0171 (6)	-0.0013 (4)	0.0021 (4)	0.0002 (4)
C03	0.0189 (5)	0.0244 (6)	0.0184 (6)	-0.0038 (5)	0.0051 (5)	-0.0007 (5)
C04	0.0163 (5)	0.0235 (6)	0.0224 (6)	-0.0043 (5)	0.0036 (5)	-0.0006 (5)
C05	0.0167 (5)	0.0208 (6)	0.0196 (6)	-0.0017 (4)	-0.0004 (4)	-0.0024 (5)
C06	0.0165 (5)	0.0205 (5)	0.0162 (6)	-0.0013 (4)	0.0016 (4)	-0.0009 (4)
C07	0.0137 (5)	0.0161 (5)	0.0164 (5)	-0.0005 (4)	0.0022 (4)	-0.0001 (4)
C08	0.0144 (5)	0.0170 (5)	0.0143 (5)	-0.0010 (4)	0.0007 (4)	-0.0001 (4)
C09	0.0147 (5)	0.0172 (5)	0.0139 (5)	0.0002 (4)	0.0019 (4)	0.0004 (4)
C10	0.0160 (5)	0.0215 (5)	0.0143 (5)	-0.0022 (4)	0.0023 (4)	-0.0018 (4)
C11	0.0177 (5)	0.0193 (5)	0.0155 (5)	-0.0012 (4)	0.0035 (4)	-0.0004 (4)
C12	0.0229 (6)	0.0254 (6)	0.0156 (6)	-0.0037 (5)	0.0026 (5)	-0.0035 (5)
C13	0.0246 (6)	0.0269 (6)	0.0168 (6)	-0.0022 (5)	0.0080 (5)	-0.0001 (5)
C14	0.0190 (5)	0.0197 (5)	0.0214 (6)	-0.0024 (4)	0.0065 (5)	0.0001 (5)
C15	0.0174 (5)	0.0193 (5)	0.0183 (6)	-0.0018 (4)	0.0032 (4)	-0.0004 (4)
C16	0.0158 (5)	0.0166 (5)	0.0142 (5)	0.0005 (4)	0.0033 (4)	0.0003 (4)
C17	0.0141 (5)	0.0165 (5)	0.0143 (5)	0.0007 (4)	0.0019 (4)	0.0007 (4)
C18	0.0132 (5)	0.0163 (5)	0.0147 (5)	0.0004 (4)	0.0007 (4)	-0.0002 (4)
C19	0.0147 (5)	0.0197 (5)	0.0153 (5)	-0.0012 (4)	0.0021 (4)	-0.0024 (4)
C20	0.0157 (5)	0.0172 (5)	0.0154 (5)	0.0017 (4)	0.0003 (4)	-0.0013 (4)

C21	0.0169 (5)	0.0207 (5)	0.0197 (6)	-0.0020(5)	0.0012 (4)	-0.0040 (5)
C22	0.0212 (6)	0.0226 (6)	0.0169 (6)	-0.0003 (5)	-0.0013 (5)	-0.0046 (5)
C23	0.0221 (6)	0.0228 (6)	0.0139 (6)	0.0024 (5)	0.0011 (4)	0.0003 (4)
C24	0.0173 (5)	0.0205 (5)	0.0155 (6)	0.0001 (4)	0.0018 (4)	0.0004 (4)
C25	0.0153 (5)	0.0159 (5)	0.0144 (5)	0.0016 (4)	0.0002 (4)	-0.0004 (4)
C26	0.0147 (5)	0.0161 (5)	0.0134 (5)	0.0014 (4)	0.0011 (4)	-0.0002 (4)
C27	0.0146 (5)	0.0169 (5)	0.0132 (5)	0.0000 (4)	0.0019 (4)	0.0006 (4)
C28	0.0165 (5)	0.0283 (6)	0.0230 (6)	-0.0009(5)	0.0023 (5)	-0.0062 (5)
C29	0.0229 (6)	0.0226 (6)	0.0240 (7)	-0.0045 (5)	0.0055 (5)	-0.0057 (5)
C30	0.0254 (6)	0.0201 (6)	0.0218 (6)	-0.0035 (5)	0.0046 (5)	-0.0013 (5)
Geometric part	ameters (Å, °)					
C01—C02		1.5161 (17)	C15-	C16	1.39	956 (16)
C01—C27		1.5201 (15)	C15-	-H15	0.93	500
C01—C28		1.5416 (17)	C16-	C17	1.47	754 (15)
C01—H01		1.0000	C17-	C18	1.39	906 (16)
C02—C03		1.3904 (16)	C18-	C26	1.4	148 (15)
C02—C07		1.4021 (16)	C18-	C19	1.5	148 (16)
C03—C04		1.3917 (18)	C19-	C20	1.5	159 (16)
С03—Н03		0.9500	C19-	C30	1.54	419 (17)
C04—C05		1.3895 (17)	C19-	—H19	1.00	000
С04—Н04		0.9500	C20-	C21	1.38	831 (16)
C05—C06		1.3955 (16)	C20-	C25	1.4	123 (16)
С05—Н05		0.9500	C21-	C22	1.39	966 (17)
C06—C07		1.3939 (17)	C21-	—H21	0.9	500
С06—Н06		0.9500	C22-	C23	1.39	958 (17)
C07—C08		1.4756 (15)	C22-	—H22	0.9	500
C08—C09		1.3924 (15)	C23-	C24	1.39	915 (17)
C08—C27		1.4142 (16)	C23-	—H23	0.93	500
C09—C17		1.4131 (16)	C24-	C25	1.39	952 (16)
C09—C10		1.5188 (16)	C24-	—H24	0.93	500
C10—C11		1.5199 (16)	C25-	C26	1.47	756 (16)
C10—C29		1.5405 (17)	C26-	C27	1.39	919 (16)
C10—H10		1.0000	C28-	-H28A	0.98	800
C11—C12		1.3864 (16)	C28-	-H28B	0.98	800
C11—C16		1.4035 (17)	C28-	-H28C	0.98	800
C12—C13		1.3950 (17)	C29-	-H29A	0.98	800
С12—Н12		0.9500	C29-	—H29B	0.98	800
C13—C14		1.3896 (18)	C29-	—Н29С	0.98	800
С13—Н13		0.9500	C30-	-H30A	0.98	800
C14—C15		1.3951 (16)	C30-	-H30B	0.98	800
C14—H14		0.9500	C30-	-H30C	0.98	800
C02—C01—C2	7	101.95 (9)	C18-		120	.18 (10)
C02—C01—C2	8	110.87 (9)	C18-		131	.61 (10)
C27—C01—C2	8	112.83 (10)	C09-		108	.19 (10)
С02—С01—Н0	01	110.3	C17-		119	.89 (10)
С27—С01—Н0)1	110.3	C17-		129	.52 (10)
С28—С01—Н0	01	110.3	C26-		110	.59 (10)

C03—C02—C07	120.61 (11)	C18—C19—C20	102.11 (9)
C03—C02—C01	128.25 (11)	C18—C19—C30	112.34 (10)
C07—C02—C01	111.01 (10)	C20—C19—C30	111.02 (10)
C02—C03—C04	119.03 (11)	С18—С19—Н19	110.4
С02—С03—Н03	120.5	С20—С19—Н19	110.4
С04—С03—Н03	120.5	С30—С19—Н19	110.4
C05—C04—C03	120.59 (11)	C21—C20—C25	120.82 (11)
C05—C04—H04	119.7	C21—C20—C19	128.64 (10)
С03—С04—Н04	119.7	C25—C20—C19	110.51 (10)
C04—C05—C06	120.64 (12)	C20—C21—C22	119.09 (11)
С04—С05—Н05	119.7	C20—C21—H21	120.5
С06—С05—Н05	119.7	C22—C21—H21	120.5
C07—C06—C05	119.01 (11)	C23—C22—C21	120.30 (11)
С07—С06—Н06	120.5	С23—С22—Н22	119.8
С05—С06—Н06	120.5	C21—C22—H22	119.8
C06—C07—C02	120.09 (10)	C24—C23—C22	120.90 (11)
C06—C07—C08	131.50 (11)	С24—С23—Н23	119.6
C02—C07—C08	108.34 (10)	С22—С23—Н23	119.6
C09—C08—C27	120.21 (10)	C23—C24—C25	119.04 (11)
C09—C08—C07	131.59 (11)	C23—C24—H24	120.5
C27—C08—C07	108.19 (10)	C25—C24—H24	120.5
C08—C09—C17	119.62 (11)	C24—C25—C20	119.81 (11)
C08—C09—C10	129.86 (10)	C24—C25—C26	131.77 (10)
C17—C09—C10	110.52 (9)	C20—C25—C26	108.39 (10)
C09—C10—C11	101.95 (9)	C27—C26—C18	119.88 (10)
C09—C10—C29	112.54 (10)	C27—C26—C25	132.24 (10)
C11—C10—C29	110.72 (9)	C18—C26—C25	107.88 (10)
С09—С10—Н10	110.5	C26—C27—C08	119.80 (10)
С11—С10—Н10	110.5	C26—C27—C01	129.68 (10)
С29—С10—Н10	110.5	C08—C27—C01	110.44 (10)
C12—C11—C16	120.66 (11)	C01—C28—H28A	109.5
C12—C11—C10	128.45 (11)	C01—C28—H28B	109.5
C16—C11—C10	110.75 (10)	H28A—C28—H28B	109.5
C11—C12—C13	118.97 (12)	C01—C28—H28C	109.5
С11—С12—Н12	120.5	H28A—C28—H28C	109.5
C13—C12—H12	120.5	H28B—C28—H28C	109.5
C14—C13—C12	120.66 (11)	C10—C29—H29A	109.5
C14—C13—H13	119.7	C10—C29—H29B	109.5
C12—C13—H13	119.7	H29A—C29—H29B	109.5
C13—C14—C15	120.62 (11)	C10—C29—H29C	109.5
C13—C14—H14	119.7	$H_{29A} - C_{29} - H_{29C}$	109 5
C15-C14-H14	119.7	H29B - C29 - H29C	109.5
C14-C15-C16	118 91 (11)	C19—C30—H30A	109.5
C14—C15—H15	120.5	С19—С30—Н30В	109.5
C16—C15—H15	120.5	H30A—C30—H30B	109.5
C15—C16—C11	120 16 (11)	C19—C30—H30C	109.5
C15-C16-C17	131 30 (11)	H_{30A} $-C_{30}$ $-H_{30C}$	109.5
C11-C16-C17	108 46 (10)	$H_{30}B - C_{30} - H_{30}C$	109.5
	170.22 (12)		170 54 (10)
$C_2/-C_{01}-C_{02}-C_{03}$	-1/8.33(12)	UII—UI6—UI7—UI8	1/8.54 (12)

C28—C01—C02—C03	-57.99 (16)	C15—C16—C17—C09	-176.37 (12)
C27—C01—C02—C07	-2.60 (12)	C11—C16—C17—C09	0.28 (13)
C28—C01—C02—C07	117.74 (11)	C09—C17—C18—C26	3.09 (16)
C07—C02—C03—C04	-0.37 (18)	C16—C17—C18—C26	-174.99 (11)
C01-C02-C03-C04	175.00 (11)	C09—C17—C18—C19	-176.57 (11)
C02—C03—C04—C05	-1.24 (18)	C16—C17—C18—C19	5.3 (2)
C03—C04—C05—C06	1.61 (19)	C17—C18—C19—C20	-173.01 (11)
C04—C05—C06—C07	-0.33 (18)	C26—C18—C19—C20	7.30 (12)
C05—C06—C07—C02	-1.26 (17)	C17—C18—C19—C30	67.99 (15)
C05-C06-C07-C08	-177.68 (11)	C26-C18-C19-C30	-111.70 (11)
C03—C02—C07—C06	1.63 (18)	C18—C19—C20—C21	176.85 (11)
C01—C02—C07—C06	-174.48 (10)	C30—C19—C20—C21	-63.23 (16)
C03—C02—C07—C08	178.80 (11)	C18—C19—C20—C25	-5.03 (12)
C01—C02—C07—C08	2.70 (13)	C30—C19—C20—C25	114.90 (11)
C06—C07—C08—C09	-3.7 (2)	C25—C20—C21—C22	0.88 (17)
C02—C07—C08—C09	179.52 (12)	C19—C20—C21—C22	178.83 (11)
C06—C07—C08—C27	175.11 (12)	C20—C21—C22—C23	0.61 (18)
C02—C07—C08—C27	-1.63 (13)	C21—C22—C23—C24	-0.82 (18)
C27—C08—C09—C17	-5.30 (17)	C22—C23—C24—C25	-0.48 (18)
C07—C08—C09—C17	173.44 (11)	C23—C24—C25—C20	1.95 (17)
C27—C08—C09—C10	173.82 (11)	C23—C24—C25—C26	179.84 (12)
C07—C08—C09—C10	-7.4 (2)	C21—C20—C25—C24	-2.18 (17)
C08—C09—C10—C11	177.42 (12)	C19—C20—C25—C24	179.53 (10)
C17—C09—C10—C11	-3.40 (12)	C21—C20—C25—C26	179.47 (10)
C08—C09—C10—C29	-63.93 (16)	C19—C20—C25—C26	1.18 (12)
C17—C09—C10—C29	115.25 (11)	C17—C18—C26—C27	-6.66 (16)
C09—C10—C11—C12	179.26 (12)	C19—C18—C26—C27	173.06 (10)
C29—C10—C11—C12	59.33 (17)	C17—C18—C26—C25	173.32 (10)
C09—C10—C11—C16	3.59 (13)	C19—C18—C26—C25	-6.95 (12)
C29—C10—C11—C16	-116.35 (11)	C24—C25—C26—C27	5.5 (2)
C16—C11—C12—C13	0.69 (18)	C20—C25—C26—C27	-176.45 (12)
C10-C11-C12-C13	-174.61 (12)	C24—C25—C26—C18	-174.51 (12)
C11—C12—C13—C14	0.63 (19)	C20—C25—C26—C18	3.56 (12)
C12—C13—C14—C15	-1.14 (19)	C18—C26—C27—C08	4.24 (16)
C13-C14-C15-C16	0.32 (18)	C25—C26—C27—C08	-175.74 (11)
C14—C15—C16—C11	1.00 (17)	C18—C26—C27—C01	-172.36 (11)
C14—C15—C16—C17	177.32 (11)	C25—C26—C27—C01	7.7 (2)
C12—C11—C16—C15	-1.52 (18)	C09—C08—C27—C26	1.74 (17)
C10-C11-C16-C15	174.55 (10)	C07—C08—C27—C26	-177.27 (10)
C12—C11—C16—C17	-178.61 (11)	C09—C08—C27—C01	178.95 (10)
C10-C11-C16-C17	-2.54 (13)	C07—C08—C27—C01	-0.06 (13)
C08—C09—C17—C18	2.87 (17)	C02—C01—C27—C26	178.41 (11)
C10-C09-C17-C18	-176.40 (10)	C28—C01—C27—C26	59.45 (16)
C08—C09—C17—C16	-178.63 (10)	C02—C01—C27—C08	1.55 (12)
C10—C09—C17—C16	2.09 (13)	C28—C01—C27—C08	-117.41 (11)
C15—C16—C17—C18	1.9 (2)		< <i>'</i> ,

